Automatic Detection of Relevant Head Gestures in American Sign Language Communication
نویسندگان
چکیده
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal’s peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect “head shakes.” In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists’ labels in a significant number of cases.
منابع مشابه
Persian sign language detection based on normalized depth image information
There are many reports of using the Kinect to detect hand and finger gestures after release of device by Microsoft. The depth information is mostly used to separate the hand image in the two-dimension of RGB domain. This paper proposes a method in which the depth information plays a more dominant role. Using a threshold in depth space first the hand template is extracted. Then in 3D domain the ...
متن کاملAn evaluation of real-time requirements for automatic sign language recognition using ANNs and HMMs - The LIBRAS use case
Sign languages are the natural way Deafs use to communicate with other people. They have their own formal semantic definitions and syntactic rules and are composed by a large set of gestures involving hands and head. Automatic recognition of sign languages (ARSL) tries to recognize the signs and translate them into a written language. ARSL is a challenging task as it involves background segment...
متن کاملFacial Feature Tracking and Occlusion Recovery in American Sign Language
Facial features play an important role in expressing grammatical information in signed languages, including American Sign Language (ASL). Gestures such as raising or furrowing the eyebrows are key indicators of constructions such as yes-no questions. Periodic head movements (nods and shakes) are also an essential part of the expression of syntactic information, such as negation (associated with...
متن کاملStatic Hand Gesture Recognition for Sign Language Alphabets using Edge Oriented Histogram and
In recent years, enormous research is progressing in the field of Computer Vision and Human Computer Interaction where hand gestures play a vital role. Hand gestures are more powerful means of communication for hearing impaired when they communicate to the normal people everywhere in day to day life. As the normal people find little difficulty in recognizing and interpreting the meaning of sign...
متن کاملAutomatic Sign Language Analysis: A Survey and the Future beyond Lexical Meaning
Research in automatic analysis of sign language has largely focused on recognizing the lexical (or citation) form of sign gestures as they appear in continuous signing, and developing algorithms that scale well to large vocabularies. However, successful recognition of lexical signs is not sufficient for a full understanding of sign language communication. Nonmanual signals and grammatical proce...
متن کامل